OMIS 105: Final Group Project

By: Natalie Tun, Andrea Tovar, Jonah Engelmann, Andrew Wang, Kayla
Huffman, Izzy Furuhashi

Part One: Background/Objective

Our SCU Leavey School of Business course management system is designed to
efficiently organize and track essential academic information (ex: students, professors, courses,
enrollments, departments). As the university has expanded, managing enrollments, course
offerings, and student performance has become complex. With thousands of students, the
administration has struggled to ensure smooth operations.

Thus, the administration has decided to hire our team to implement a database system
that tracks all core elements of the university’s courses and enrollments. With this system, the
university will record and track student information, like student ID, name, major, year of study,
and email. Due to Leavey School of Business policies, the database enforces a single major rule
and therefore can only belong to one department. It will also manage professor details, such as
professor ID, name, and their email. Each course will be recorded with a unique course 1D,
course name, number of credits, description, and prerequisites. Finally, our system tracks all
departments to ensure each student, course, and professor is correctly associated with their
respective academic unit.

When a student enrolls in a course, their enrollment is added to the system, linking the
student to the specific course and professor for that academic term. By implementing this
database, this system will improve in terms of organization, reducing errors, and supporting

future academic planning.

Part Two: Conceptual Diagram

DepartmentID Department Name

Building/Location

Department email ‘

DEPARTMENT PROFESSOR
Department ID Professor ID
Department o
—HH Name H Emnloys (O<|Professor Nam.e
Building/Location Profess?r Email
Department Email]
Administers
Teaches
Offers
STUDENT COURSE
Student ID Course ID
Course Name
Name ENROLLMENT]
. Credits
Major AT a
cademic Term ourse
Year of Stud)-l Enroliment Date Description
Student Email Final Grade Prerequisites
Part Three: Logical Design
DEPARTMENT

A
STUDENT
‘ StudentiD ‘ Name ‘ Major Year of Study Email _D_ega_n_m_eg(lD_|
i
PROFESSOR
| ProfessoriD ‘ Pr:;ﬁ:“ Professor Email| _DepartmentiD ’ ENROLLMENT
‘ CourselD | StudentiD Academic Term| Enroliment Date Final Grade ‘

COURSE
Y

‘ CourselD

Course Name Credit

Course D ipti \I

** Based on feedback in class, we removed DepartmentID from COURSE to eliminate
redundancy and the risk of mismatched department data.

Part 4: Data Dictionary

DEPARTMENT

Name Data Type Constraints Key Description

DepartmentID numeric(11,0) |>0 PK Unigue identifier for a department
Department Name |varchar(25) Name of department

Building/Location varchar(25) Building name of department
Department Email |varchar(20) Email of department

PROFESSOR

Name Data Type Constraints Key Description

ProfessorlD numeric(11,0) |=0 PK Unique identifier for a professor
Professor Name varchar(20) Full name of professor

Professor Email varchar(30) Email address of professor
DepartmentID numeric(11,0) |>0 FK Unique identifier for a department
STUDENT

Name Data Type Constraints Key Description

StudentlD numeric(11,0) |>0 PK Unique identifier for a student

Name varchar(25)) First and Last name of student

Major varchar(25) Major of a student

Year of Study numeric(8,0) =0 Number of years a student has been studying for
Email varchar(20) Email of a student

DepartmentID numeric(11,0) |>0 FK Unique identifier for a department
ENROLLMENT

Name Data Type Constraints Key Description

CourselD numeric(11,0) |=0 PK Unique identifier for a course

StudentlD numeric(11,0) |=0 PK Unique identifier for a student

Academic Term varchar(20) Academic Term at time of enrollment
Enrollment Date date Date of student's enrollment

Final Grade numeric(11,2) |>0 Final grade a student receives in the enrolled class
COURSE

Name Data Type Constraints Key Description

CourselD numeric(11,0) PK Unique identifier for a course

Course Name varchar(25) Name of the course

Credits numeric(5,0) >=(Number of credits assigned to the course
Course Descriptions | varchar(45) Brief description of the course content
Prerequisites varchar(20) Courses required before taking this course
ProfessaorlD numeric{11,0) |>0 FK Unique identifier for a professor
DepartmentID numeric{11,0) |>0 FK Unique identifier for a department

Part 5: SQL Implementation - The Physical Design in My SQL

CREATE SCHEMA University;
USE University;

CREATE TABLE Department (

);

DepartmentID NUMERIC(11,0) PRIMARY KEY CHECK (DepartmentID > 0),
DepartmentName VARCHAR(25),

BuildingLocation VARCHAR(25),

DepartmentEmail VARCHAR(20)

CREATE TABLE Professor (

);

ProfessorID NUMERIC(11,0) PRIMARY KEY CHECK (ProfessorID > 0),
ProfessorName VARCHAR(20),
ProfessorEmail VARCHAR(30),

DepartmentID NUMERIC(11,0) CHECK (DepartmentID > 0),
FOREIGN KEY (DepartmentID) REFERENCES Department(DepartmentID)

CREATE TABLE Student (

StudentID NUMERIC(11,0) PRIMARY KEY CHECK (StudentID > 0)

Name VARCHAR(25),

Major VARCHAR(25),

YearOfStudy NUMERIC(8,0) CHECK (YearOfStudy > 0)

Email VARCHAR(20),

DepartmentID NUMERIC(11,0) CHECK (DepartmentID > 0)

FOREIGN KEY (DepartmentID) REFERENCES Department(DepartmentID)

CREATE TABLE Course (
CourseID NUMERIC(11,@) PRIMARY KEY CHECK (CourselD > @),
CourseName VARCHAR(25),
Credits NUMERIC(5,0) CHECK (Credits >= @),
CourseDescription VARCHAR(45),
Prerequisites VARCHAR(20),
ProfessorID NUMERIC(11,0) CHECK (ProfessorID > @),
DepartmentID NUMERIC(11,0) CHECK (DepartmentID > @),
FOREIGN KEY (ProfessorID) REFERENCES Professor(ProfessorID),
FOREIGN KEY (DepartmentID) REFERENCES Department(DepartmentID)
);

CREATE TABLE Enrollment (
CourseID NUMERIC(11,@) CHECK (CourselD > @),
StudentID NUMERIC(11,0) CHECK (StudentID > 0),
AcademicTerm VARCHAR(20),
EnrollmentDate DATE,
FinalGrade NUMERIC(11,2) CHECK (FinalGrade >= 0),
PRIMARY KEY (CourseID, StudentID),
FOREIGN KEY (CourseID) REFERENCES Course(CourselD),
FOREIGN KEY (StudentID) REFERENCES Student(StudentID)

INSERT INTO Department (DepartmentID, DepartmentName, BuildinglLocation, DepartmentEmail) VALUES
(1, 'Finance', 'Lucas Hall', 'finance@scu.edu'),

(2, 'Marketing', 'Kenna Hall', 'marketing@scu.edu'),

(3, 'Accounting', 'Alumni Science', 'accounting@scu.edu'),

(4, 'Computer Science', 'SCDI', 'compsci@scu.edu'),

(5, 'Economics', 'Vari Hall', 'economics@scu.edu'),

(6, 'Business Analytics', 'Heafey Hall', 'analytics@scu.edu'),

(7, 'Entrepreneurship', 'Varsi Hall', 'entre@scu.edu');

INSERT INTO Professor (ProfessorID, ProfessorName, ProfessorEmail, DepartmentID) VALUES
(101, 'Alice Smith', 'asmith@scu.edu', 1)

(102, 'Michael Johnson', 'mjohnson@scu.edu', 2),

(103, 'David Lee', 'dlee@scu.edu', 3),

(104, 'Sarah Brown', 'sbrown@scu.edu', 4),

(105, 'Emily Davis', 'edavis@scu.edu', 5),

(106, 'James Wilson', 'jwilson@scu.edu', 6),

(107, 'Jessica Moore', 'jmoore@scu.edu', 7);

INSERT INTO Student (StudentID, Name, Major, YearOfStudy, Email, DepartmentID) VALUES
(201, 'Alice Johnson', 'Finance', 2, '"ajohnson@scu.edu', 1)

(202, 'Bob Smith', 'Marketing', 3, 'bsmith@scu.edu', 2),

(203, 'Charlie Brown', 'Accounting', 1, 'cbrown@scu.edu', 3),

(204, 'Daisy White', 'Management', 4, 'dwhite@scu.edu', 4),

(205, 'Evan Green', 'Economics', 2, 'egreen.edu', 5)

(206, 'Frank Adams', 'Business Analytics', 3, 'fadams@scu.edu', 6),

(207, 'Grace Hall', 'Entrepreneurship', 1, 'ghall@scu.edu', 7);

INSERT INTO Course (CourseID, CourseName, Credits, CourseDescription, Prerequisites, ProfessorID, DepartmentID) VALUES
, 'Financial Management', 4, 'Advanced financial concepts', NULL, '101', '1'),
'Intro to Marketing', 4, 'Marketing tactics and strategy', NULL, '102', '2'),

(303, 'Managerial Accounting', 5, 'Accounting Decision Making', 'Basic Accounting', '103', '3'),

'Business Law', 4, 'Basics of Business Law', NULL, '104','4'),

'Macroeconomics', 4, 'Study of large-scaled economic systems', NULL, '105', '5'),

'Data Analytics', 5, 'Business analytics tools and techniques', NULL,'106', '6'),
, 'Shark Tank', 2, 'Start-up Development Strategies', NULL,'107', '7');

INSERT INTO Enrollment (StudentID, CourseID, EnrollmentDate, AcademicTerm,FinalGrade) VALUES

(201, 301, '2024-08-15', 'Fall 2024', '98'),
302, '2024-08-20', 'Fall 2024', '85'),

303, '2025-01-10', 'Spring 2025', '86'),

, 304, '2025-01-12', 'Spring 2025', '76'),
, 305, '2024-08-18', 'Fall 2024', '94'),

6, 306, '2024-12-05', 'Winter 2025', '90'),

307, '2025-01-14', 'Spring 2025', '67');

SQL SELECT Queries: 3 Different Datasets Queried in SQL
Multi-Table Query: This query is designed to provide the school the ability to see all students
who have gotten above or below a certain grade in any course. For example, this could be used to
find all students who have gotten an A in a course in order to give them a reward. In the image
below, it is implemented to return all student names, course names and final grades where the
student received a score over 90% (an A- or better) .

SELECT
Student.Name, Course.CourseName, Enrollment.FinalGrade
FROM
Student JOIN Enrollment ON Student.StudentID = Enrollment.StudentID
JOIN Course on Enrollment.CourseID = Course.CourseID
WHERE
Enrollment.FinalGrade >= 90.00
ORDER BY
Enrollment.FinalGrade DESC

EE +% FilterRows: Q Export: rtgj

CourseName FinalGrade

String Attributes Query: This query is designed to provide the school the ability to see all courses
available in a full calendar year. For example, this could be used to track all the courses taken in
2024 to see what should and shouldn’t be offered again in the future. In the image below, it is
implemented to return the specific course name, and exact term of all courses offered in the year
2025.

SELECT
Course.CourseName, Enrollment.AcademicTerm
FROM
Enrollment JOIN Course on Enrollment.CourseID = Course.CourselID
WHERE
AcademicTerm LIKE "%2025%"
Order By

5 S IR T 1) B 1 O [

Enrollment.EnrollmentDate

27:8

esultGrid EE *3 FilterRows: Q

CourseName AcademicTerm

Data Analytics

. Managerial Accounting |Spring 2025
[[BusinessLaw ____[Spring 2025

Shark Tank Spring 2025

Group By Query: This query is designed to help the school find classes where students are
struggling or exceeding by looking at the average final grade. For example, this could be used to
find the courses where the average grade is below a C or above a B+ in order for the school to
make changed to the course. In the image below, it is implemented to find the Course ID and

average grade for all courses where the average grade was below an 80 (worse than a B-)

SELECT CourseID, AVG(FinalGrade) AS AvgGrade
FROM Enrollment

GROUP BY CourselD

HAVING AVG(FinalGrade) < 80;

CourselD AvgGrade

